If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-4p=40-3p^2
We move all terms to the left:
7p^2-4p-(40-3p^2)=0
We get rid of parentheses
7p^2+3p^2-4p-40=0
We add all the numbers together, and all the variables
10p^2-4p-40=0
a = 10; b = -4; c = -40;
Δ = b2-4ac
Δ = -42-4·10·(-40)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{101}}{2*10}=\frac{4-4\sqrt{101}}{20} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{101}}{2*10}=\frac{4+4\sqrt{101}}{20} $
| -x^2-8x-3000=0 | | 11x+12—8x=—3 | | x-27=-90 | | 10x^2-4x-40=0 | | x+6,6=23,4 | | (x+15)/14=53 | | 11,75+x=21,85 | | 0.9x+0.8=2.6 | | 49^x=7^2 | | x+8=10x-4 | | 142+x=210 | | 10x+5=6x+4 | | 5=4t+ | | x+9=25,7 | | 2/3x+(3-2x)^2/18-(2x-1)(2x+1)/18=x-5/3+x+4/6-5/9x | | 9x-25=7x+15 | | 9/17*x=15/34 | | 5x(2x-1)+10=7(2x-1) | | ((x+1)/(x+2))+((x+3)/(x+4))=(x+15)/(x^2+6x+8) | | 5^2x=7^x | | 16−3p=2/3+5 | | (2x+3)²+(x-3)²=9 | | 0.2x+0,4=0,3x+0,6 | | x(x+6)=8(x33 | | 15x+17x-28+22-10x=5 | | 6x-2x+1=5 | | x+3(x-2)+2=2x+6 | | 10p^2-4p-40=0 | | -2x-9+4x+5=10 | | -12x+30-3x=0 | | z^2-8^2+25=0 | | 10+3(x+2)=21 |